Lösungen

Aufgabe 1

1a	Nullstellen: notw. und hinr. Bedingung: $f(x)=0$.								
	$f(x) = 0 \Leftrightarrow \frac{1}{8}(x^3 - 12x - 16) = 0.$ $(x^3 - 12x - 16) : (x+2) = x^2 - 2x - 8$ $-(x^3 + 2x^2)$ $$	1							
	Die Nullstelle x=-2 wird erraten. Um die weiteren Nullstellen zu finden, wird eine Polynomdivision durchgeführt. Die weiteren Lösungen ergeben sich aus $ -2x^2-12x-16 -(-2x^2-4x) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16) -(-8x-16)$	3							
	$x^{2} - 2x - 8 = 0 \Leftrightarrow (x - 1)^{2} = 9 \Leftrightarrow x = 4 \lor x = -2$.	3							
	Die Nullstellen sind: $x_{N_1} = -2$ und $x_{N_2} = 4$. Berechnung der Extremstellen:								
	Notw. Bedingung ist: $f'(x) = 0 \Leftrightarrow \frac{3}{8}(x^2 - 4) = 0$. Man sieht sofort, dass $x_{e_1} = -2$	3							
	und $x_{E_2} = 2$ mögliche Extremstellen sind. Es ist: $f''(x) = \frac{3}{4}x$, $f''(-2) = -\frac{3}{2} < 0$ und $f''(2) = \frac{3}{2} > 0$. $x_{E_1} = -2$ ist lokales Maximum, $x_{E_1} = 2$ ist lokales								
	Minimum.								
1b	Berechnung der Wendestelle: Notw. Bedingung: $f''(x) = 0 \Leftrightarrow x = 0$. $x_w = 0$ ist	1							
	einzige Wendestelle. y-Wert: $y_W = -2$. Gleichung der Tangente: Die Steigung m_t der Tangente in W(0;-2) ergibt sich aus der ersten Ableitung von f an der Stelle $x_W = 0$. Es ist $f'(0) = -\frac{3}{2}$. Aus y=mx+k ergibt sich daher $t: y = -\frac{3}{2}x + k$. Da W auf der Tangente liegt, folgt k=-2. Entsprechend erhält man die Gleichung der Normalen, wobei die Steigung der Normalen m_n mit der Formel $m_n = -\frac{1}{m_n}$ zu								
	$m_n = \frac{2}{3}$ berechnet wird. Es ergibt sich: $n: y = \frac{2}{3}x - 2$.	3							
1c	Für die Gleichung des Kreises mit Mittelpunkt in M(c;d) gilt: $(x-c)^2 + (y-d)^2 = r^2$. r ist dabei der Radius des Kreises.	1							
	Da W auf dem Kreis liegen soll, ergibt sich: $(-c)^2 + (-2 - d)^2 = 52$.	2							
	Weil der Mittelpunkt des Kreises auf der Normalen liegen soll, muss gelten:	2							
	$d = \frac{2}{3}c - 2$. Setzt man dies in die								
	erste Gleichung ein, so folgt: $c^2 + (\frac{2}{3}c)^2 = 52 \Leftrightarrow \frac{13}{9}c^2 = 52 \Leftrightarrow c = -6 \lor c = 6.$	1							
	Für d erhält man $d = -6 \lor d = 2$. Es geben sich also zwei Kreise mit den Mittelpunkten $M_1(-6;-6)$ und $M_2(6;2)$.	1							

Aufgabe 2

2a	Der Grad der Ableitungsfunktion ist größer oder gleich 3.	1							
24	Eine der möglichen Begründungen wird erwartet:								
	• über Nullstellen:								
	Bei Verschiebung des Graphen in y-Richtung entstehen höchstens 3								
	Nullstellen. Das Produkt der zugehörigen Linearfaktoren hat den Grad 3.								
	• Über Extremstellen:								
	Der Graph von f' hat zwei Extremstellen. Die Ableitungsfunktion f'' von	3							
	f' besitzt daher zwei Nullstellen. f'' ist also (mindestens) 2. Grades. f'' ist								
	f' Ableitung von f' , also muss f' (mindestens) 3. Grades sein.								
	Über Wendestellen: analog								
2b	Der Graph von f fällt im Intervall [a, d] monoton, da die Werte der								
	Ableitungsfunktion f' in diesem Intervall negativ sind. Für x-Werte aus dem								
	Intervall [d,e] steigt der Graph von f monoton, da die Ableitungsfunktion dort	3							
	positiv ist.								
2c	zur Stelle b:								
	Weil $f'(b) = 0$ ist, hat der Graph von f eine waagerechte Tangente. Das								
	Vorzeichenverhalten von f' ändert sich bei b nicht, es liegt also eine Sattelstelle	3							
	von f vor.								
	zur Stelle c: Der Graph von f' besitzt bei c einen Tiefpunkt, es liegt bei c also eine Wendestelle von f vor.								
	zur Stelle d: Weil $f'(d) = 0$ ist, hat der Graph von f eine waagerechte Tangente. Das								
	Vorzeichen von f' wechselt von negativen zu positiven Werten. f geht daher								
	von fallendem zu steigendem Verhalten über, es liegt also eine Minimalstelle von								
	f vor.								
2d	Skizze:								
		3							
	II 842								
2e	f kann bis zu 4 Nullstellen haben, da der Grad von f gleich 4 ist, wobei mehrfache	3							
	Nullstellen auftreten können. Wenn der Sattelpunkt auf der x-Achse liegt, gibt es								
	eine dreifache und eine einfache Nullstelle, wenn der Sattelpunkt unter der x-								
	Achse liegt, dann gibt es zwei einfache Nullstellen, wenn der Tiefpunkt oberhalb								
	Transfer mega, dumin gree es 2 wer eminuent i warsternen, wenne der i respensible es en muse								
	der x-Achse liegt, dann gibt es gar keine Nullstelle, wenn der Graph die x-Achse im Tiefpunkt berührt, dann existiert eine doppelte Nullstelle.								

Aufgabe 3

3a	$f'(x) = -3x^2 + 60x - 225$	1
	f'(9) = 72	1
	Mögliche Antworten sind z.B. - zu diesem Zeitpunkt steigt die Anzahl der Surfer um 72 Surfer pro Stunde - die lokale Änderungsrate beträgt 72 Surfer pro Stunde. Innermathematische Formulierungen wie z.B. " f'(9) gibt die Steigung der	2
21	Tangente an der Stelle $x = 9$ an" berücksichtigen den Kontext nicht angemessen.	
3b	Ermittlung des durchschnittlichen Spitzenwertes: Wenn x relative Extremstelle ist, dann muss gelten: $f'(x) = 0$. f'(x) = 0	
	$\Leftrightarrow -3x^2 + 60x - 225 = 0$	2
	$\Leftrightarrow x^2 - 20x + 75 = 0$	
	$\Leftrightarrow x = 5 \lor x = 15$	
	Eine hinr. Bedingung für ein relatives Maximum ist: $f'(x) = 0 \land f''(x) < 0$. Es ist: $f''(x) = -6x + 60$.	3
	Wegen $f''(5) > 0$ und $f''(15) < 0$ ergibt sich für $x = 15$ ein relatives Maximum mit $f(15) = 520$.	
	Der Randwert $f(4)$ liegt deutlich darunter.	
	Als Spitzenwert ergeben sich also durchschnittlich 520 Surfer.	
3c	Der Spitzenwert lag am 31.Mai mit 805 Surfern um 285 über dem	
	durchschnittlichen Spitzenwert von 520.	2
	$p = \frac{285}{520}100\% \approx 54,81\%$	2
	Damit lag der Spitzenwert am 31. Mai um ca 55% über dem durchschnittlichen	
	Spitzenwert.	
3d	Es sind unterschiedliche Prognosen möglich: (a) Annahme: An diesem bestimmten Tag wird die Zunahme von 9h bis 10h dem durchschnittlichen Zuwachs entsprechen. Prognose: $240 + (f(10) - f(9) = 240 + (270 - 196) = 314$	
	 (b) Annahme: An diesem bestimmten Tag entspricht die lokale Veränderungsrate um 9h der durchschnittlichen lokalen Änderungsrate um 9h. Prognose: 240 + f'(9) ⋅ (10-9) = 240 + 72 = 312 	3
	(c) Annahme: An diesem Tag wird sich um 10h die gleiche prozentuale Zunahme gegenüber der durchschnittlichen Surferzahl um 10h ergeben, wie sie sich an diesem Tag bereits um 9h ergeben hat. Dann ist. $\frac{240}{f(9)} = \frac{x}{f(10)}$	
	Daraus folgt die Prognose: $x = \frac{240 \cdot 270}{196} \approx 331$	
	Zur Bewertung: Falls ein Schüler mehr als eine Prognose abgibt und sie begründet und ggfs. die Prognosen gegeneinander abwägt, kann er bis zu zwei Zusatzpunkte erhalten.	evtl. 2

Punkteverteilung:

1a	1b	1c	2a	2b	2c	2d	2e	3a	3b	3c	3d
13	8	7	4	3	7	3	3	4	5	2	3
	28		20				14				

Voraussetzungen zu 1:

- a) Kurvendiskussion ganzrationaler Funktionen (Monotonie, Nullstellenberechnung, Extremstellen, Wendestellen, Sattelstellen, Tangenten- und Normalengleichung)
- b) Ermittlung von Kreisgleichungen

Voraussetzungen zu 2:

- a) Qualitative Aussagen über die grundsätzlichen Möglichkeiten des Verlaufs des Graphen einer ganzrationalen Funktion bis maximal 4. Grades
- b) Begründung des graphischen Zusammenhangs zwischen f, f' und f'' und ihre zeichnerische Umsetzung

Voraussetzungen zu 3:

- a) Auswertung einer ganzrationalen Funktion, die die zeitabhängigen Veränderungen einer Größe beschreibt
- b) Deutung von Funktionswerten, mittlerer Änderungsraten, Ableitungswerten, Wendestellen in einem einfachen Kontext